HW1 Solution

5.2.1 In Example 5.2.1 the lifelength in years of a machine was known to be $X \sim \text{Exponential}(1)$, so the mode is given by 0. In Example 5.2.2 the conditional density is given by $e^{-(x-1)}$ for x > 1. The mode of this density is 1.

In both cases the mode is at the extreme left end of the distribution and so does not seem like a very good predictor.

- **5.2.2** Using the mean of a distribution to predict a future response, the mean squared error of this predictor is $E(X-1)^2 = Var(X) = 1$, where X is the future response and 1 is the mean of the distribution.
- **5.3.5** A single observation is from an Exponential(θ) distribution, where $\theta \in \Omega = [0, \infty)$. We can parameterize this model by the mean $1/\theta$ since the mean is a 1-1 function of θ . We can also parameterize this model by the variance, since it is a 1-1 transformation of $\theta \geq 0$. The coefficient of variation is given by $\theta^{-1}/\sqrt{\theta^{-2}} = 1$. This quantity is free of θ , and so we cannot use this quantity to parameterize the model.

5.3.7

- (a) The parameter space is comprised of the possible values of θ . Hence, the parameter space is $\Omega = \{A, B\}$.
- (b) The value X = 1 is observable only when $\theta = A$. Hence, $\theta = A$ is the true parameter. The distribution of X is

$$P(X = x) = \begin{cases} 1/2 & \text{if } x = 1 \text{ or } x = 2, \\ 0 & \text{otherwise.} \end{cases}$$

(c) Both $\theta = A$ and $\theta = B$ are possible because $P_A(X = 2), P_B(X = 2) > 0$.

5.4.1 We have that

$$F_X(x) = \left\{ egin{array}{ll} 0 & x < 1 \ rac{4}{10} & 1 \leq x < 2 \ rac{7}{10} & 2 \leq x < 3 \ 1 & 3 \leq x < 4 \end{array}
ight., f_X(x) = \left\{ egin{array}{ll} rac{4}{10} & x = 1 \ rac{3}{10} & x = 2 \ rac{2}{10} & x = 3 \ rac{1}{10} & x = 4 \end{array}
ight.$$

and
$$\mu_X = \sum_{x=1}^4 x f_X(x) = 2$$
, $\sigma_X^2 = \left(\sum_{x=1}^4 x^2 f_X(x)\right) - 2^2 = 1$.

5.4.7 The file extension of a file indicates the type of the file. That means the file extension is a base distinguishing the type of the file. Hence, it is a categorical variable.